Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Comput Struct Biotechnol J ; 19: 6229-6239, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1520811

RESUMO

INTRODUCTION: The risk of infection with COVID-19 is high in lung adenocarcinoma (LUAD) patients, and there is a dearth of studies on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. OBJECTIVES: To fill the research void on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. METHODS: Herein, we identified genes, specifically the differentially expressed genes (DEGs), correlated with the susceptibility of LUAD patients to COVID-19. These were obtained by calculating standard mean deviation (SMD) values for 49 SARS-CoV-2-infected LUAD samples and 24 non-affected LUAD samples, as well as 3931 LUAD samples and 3027 non-cancer lung samples from 40 pooled RNA-seq and microarray datasets. Hub susceptibility genes significantly related to COVID-19 were further selected by weighted gene co-expression network analysis. Then, the hub genes were further analyzed via an examination of their clinical significance in multiple datasets, a correlation analysis of the immune cell infiltration level, and their interactions with the interactome sets of the A549 cell line. RESULTS: A total of 257 susceptibility genes were identified, and these genes were associated with RNA splicing, mitochondrial functions, and proteasomes. Ten genes, MEA1, MRPL24, PPIH, EBNA1BP2, MRTO4, RABEPK, TRMT112, PFDN2, PFDN6, and NDUFS3, were confirmed to be the hub susceptibility genes for COVID-19 in LUAD patients, and the hub susceptibility genes were significantly correlated with the infiltration of multiple immune cells. CONCLUSION: In conclusion, the susceptibility genes for COVID-19 in LUAD patients discovered in this study may increase our understanding of the high risk of COVID-19 in LUAD patients.

2.
Biosci Rep ; 41(12)2021 12 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1506391

RESUMO

The angiotensin-converting enzyme (ACE)/Angiotensin II (Ang II) and angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) (Ang-(1-7)) pathways are coexpressed in most tissues. The balance between these pathways determines, at least in part, whether tissue damage will occur in response to pathological stimuli. The present study tested the hypothesis that male sex and high blood pressure are associated with ACE/ACE2 imbalance in the lungs. Experiments were conducted in male and female Wistar rats and spontaneously hypertensive rats (SHRs). Lung ACE and ACE2 gene expression was also evaluated in normotensive and hypertensive humans using the Genotype-Tissue Expression (GTEx) project. Compared with Wistar rats and female SHRs, male SHRs displayed reduced lung ACE2 mRNA, ACE2 protein abundance and ACE2 activity, and increased Ang II concentration. Lung ACE mRNA levels were higher in male SHRs than in Wistar rats, whereas lung ACE protein abundance and activity were similar among the four groups of rats. Lung Ang-(1-7) concentration was higher in female than in male SHRs (89 ± 17 vs. 43 ± 2 pg/g, P<0.05). Lung ACE to ACE2 mRNA expression in hypertensive patients was significantly higher than that in normotensive subjects. Taken together, these results demonstrate that male hypertensive rats display imbalance between the ACE/Ang II and ACE2/Ang-(1-7) pathways in the lungs mainly attributable to ACE2 down-regulation. Further studies should be conducted to investigate whether this imbalance between ACE/ACE2 may promote and accelerate lung injury in respiratory infections, including coronavirus disease 2019 (COVID-19).


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteína ADAM17/metabolismo , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Regulação para Baixo , Feminino , Masculino , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Caracteres Sexuais
3.
Bioengineered ; 12(1): 2836-2850, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1297360

RESUMO

Angiotensin I-converting enzyme 2 (ACE2), type II transmembrane serine protease 2 and 4 (TMPRSS2 and TMPRSS4) are important receptors for SARS-CoV-2 infection. In this study, the full-length tree shrewACE2 gene was cloned and sequenced, and its biological information was analyzed. The expression levels of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs of the tree shrew were detected. The results showed that the full-length ACE2 gene in tree shrews was 2,786 bp, and its CDS was 2,418 bp, encoding 805 amino acids. Phylogenetic analysis based on the CDS of ACE2 revealed that tree shrews were more similar to rabbits (85.93%) and humans (85.47%) but far from mice (82.81%) and rats (82.58%). In silico analysis according to the binding site of SARS-CoV-2 with the ACE2 receptor of different species predicted that tree shrews had potential SARS-CoV-2 infection possibility, which was similar to that of rabbits, cats and dogs but significantly higher than that of mice and rats. In addition, various tissues or organs of tree shrews expressed ACE2, TMPRSS2 and TMPRSS4. Among them, the kidney most highly expressed ACE2, followed by the lung and liver. The esophagus, lung, liver, intestine and kidney had relatively high expression levels of TMPRSS2 and TMPRSS4. In general, we reported for the first time the expression of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs in tree shrews. Our results revealed that tree shrews could be used as a potential animal model to study the mechanism underlying SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/etiologia , Proteínas de Membrana/genética , SARS-CoV-2 , Serina Endopeptidases/genética , Tupaiidae/genética , Tupaiidae/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Bioengenharia , COVID-19/enzimologia , COVID-19/genética , Biologia Computacional , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Homologia Estrutural de Proteína , Distribuição Tecidual , Tupaiidae/virologia
4.
JACC Basic Transl Sci ; 5(11): 1111-1123, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1065247

RESUMO

Vascular and cardiovascular inflammation and thrombosis occur in patients with severe coronavirus disease-2019 (COVID-19). Advancing age is the most significant risk factor for severe COVID-19. Using transcriptomic databases, the authors found that: 1) cardiovascular tissues and endothelial cells express putative genes for severe acute respiratory syndrome coronavirus-2 infection, including angiotensin-converting enzyme 2 (ACE2) and basigin (BSG); 2) severe acute respiratory syndrome coronavirus-2 receptor pathways ACE2/transmembrane serine protease 2 and BSG/peptidylprolyl isomerase B(A) polarize to lung/epithelium and vessel/endothelium, respectively; 3) expression of host genes is relatively stable with age; and 4) notable exceptions are ACE2, which decreases with age in some tissues, and BSG, which increases with age in endothelial cells, suggesting that BSG expression in the vasculature may explain the heightened risk for severe disease with age.

5.
Ann Transl Med ; 8(17): 1077, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-844198

RESUMO

BACKGROUND: On March 11, 2020, the World Health Organization (WHO) officially announced that the coronavirus disease 2019 (COVID-19) had reached global pandemic status. Current studies have found that angiotensin-converting enzyme 2 (ACE2) is a cell surface receptor of the novel coronavirus that plays a vital role in the pathogenesis of COVID-19. It is of immense importance for the prevention of virus transmission and treatment to clarify the distribution and expression of ACE2 in various tissues and organs of the body. METHODS: RNAseq transcriptome data and sex data were obtained from the genotype-tissue expression (GTEx) and the Cancer Genome Atlas (TCGA) databases. We separately analyzed the distribution of ACE2 expression in different tissues in the GTEx and TCGA database, and explored the correlation between sex and ACE2 expression levels. Next, the expression levels of ACE2 in different tissues and organs and its correlation with sex were analyzed once again after combing all samples from the two databases. RESULTS: ACE2 expression data were collected from the GTEx database for 6738 normal tissues. Six hundred eighteen tumor tissue data were collected from the TCGA database. The results of the analysis are consistent from different databases. The results indicated that the expression of ACE2 was the highest in the small intestines, higher in tissues such as salivary glands in the testicular, kidney, heart, thyroid and adipose tissues, while the expression of ACE2 was lower in tissues such as the spleen, brain, muscle, pituitary, and skin. There were no significant differences in the expression of ACE2 in the different organs when it came to the individual's sex. CONCLUSIONS: Our study deeply explored the distribution and expression of ACE2 in various tissues of the human body. The tissues and organs with high ACE2 expression were consistent with the current clinical and basic research results of the novel coronavirus. Our study is conducive to the discovery of potential target organs for viral infection, to provide a reference for the development of clinical progress of patients with novel coronavirus infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA